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Abstract The small heat-shock proteins (sHSPs) comprise a family of molecular

chaperones which are widespread but poorly understood. Despite considerable

effort, comparatively few high-resolution structures have been determined for the

sHSPs, a likely consequence of their tendency to populate ensembles of inter-

converting conformational and oligomeric states at equilibrium. This dynamic

structure appears to underpin the sHSPs’ ability to bind and sequester target

proteins rapidly, and renders them the first line of defence against protein aggrega-

tion during disease and cellular stress. Here we describe recent studies on the

sHSPs, with a particular focus on those which have provided insight into the

structure and dynamics of these proteins. The combined literature reveals a picture

of a remarkable family of molecular chaperones whose thermodynamic and kinetic

properties are exquisitely balanced to allow functional regulation by subtle changes

in cellular conditions.
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1 Introduction

The small heat-shock proteins (sHSPs) are a family of almost ubiquitous stress

proteins [1].Most organisms encodemultiple sHSP genes, an observation particularly

clear in the case of higher organisms [2], with Californian Poplar having asmany as 36

[3]. In humans the sHSPs number 10 [4] and are implicated in a range of cellular

processes including modulation of cytoskeletal dynamics, stabilisation of membranes

and apoptosis [5]. These diverse cellular roles appear to be linked by the ability of the

majority of the sHSPs to interactwith non-native states of proteins [6, 7]. This property

is fundamental to their general behaviour as “molecular chaperones” [8], acting to

prevent improper polypeptide associations and aggregation [9].

Molecular chaperones play a vital role in protein homeostasis [10], the mecha-

nism through which the cell maintains proper function by balancing the influence of

a multitude of biochemical pathways [11]. It has recently become apparent that

the native state of proteins is in general less thermodynamically favoured than the

amyloid aggregates they can form [12], revealing an underlying metastability of

the proteome [13]. Consequently, the breakdown of “proteostasis” can lead to a

variety of diseases [14], many of which are characterised by the aggregation and

deposition of misfolded proteins [15]. sHSPs represent a central node in the

proteostasis “network” [11], and in the main are dramatically up-regulated under

conditions of cellular stress to being among the most abundant of all proteins [16, 17].

Furthermore, they are often found associated with protein aggregates obtained post

mortem from victims of protein-misfolding disorders [18]. The sHSPs’ chaperone

function is therefore crucial to the cell’s tolerance to stress, and their malfunction is

implicated in a range of human pathologies [19–21]. Together these observations

suggest that the sHSPs are on the front line of defence against the deleterious

consequences of protein unfolding.

Despite their obvious importance, the sHSPs remain relatively poorly characterised

on the molecular level. This is largely due to their tendency to populate a range of

dynamic oligomeric states at equilibrium, rendering them refractory to many struc-

tural biology approaches [22]. As a consequence, high-resolution information exists

only for very few members of the family [9]. Recent years have, however, seen

considerable developments in the techniques available to structural biologists, and

the means to combine data from multiple sources into “hybrid” approaches [23, 24].

Concomitantly there have been significant recent advances in our understanding of the

sHSPs. Here we describe the current knowledge of the structure and dynamics of these

remarkable molecular chaperones and their interaction with target proteins.

2 The Dynamic Architecture of sHSPs

Proteins are inherently highly dynamic entities [25–27], and an appreciation of how

their different structural forms interconvert is necessary to understand how they

carry out their cellular roles [24]. These fluctuations can span picoseconds to days,
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have diverse amplitudes and span all levels of protein organisation [28]. Further-

more, the emerging consensus is that sparsely populated “excited” states are

frequently responsible for the molecular recognition events underpinning biological

function [29–33]. The sHSPs represent a particularly intriguing illustration of this

dynamical paradigm: although they share common features, these chaperones

undergo intrinsic motions and conformational rearrangements on a wide range of

both spatial and temporal scales.

2.1 sHSP Primary Structure

The sHSP family is characterised by the presence of an “a-crystallin” domain [34],

derived from the eponymous mammalian sHSP. This central domain is flanked by N-

and C-terminal regions (Fig. 1). As perhaps to be expected for a family as large as the

sHSPs, exceptions to this basic subdivision exist, including the presence of a “middle

domain” [35] or multiple a-crystallin domains [36]. A comprehensive bioinformatics

analysis ofmore than 8,700 sHSP sequences has revealed sHSPs to be composed of on

average 161 amino acids [2], corresponding to approximately 17.9 kDa. With an

average length of 94 residues, the a-crystallin domain typically composes the bulk of

the sequence (approximately 58%). The N-terminus has an average length of 56

residues (35%), whereas at 10 residues (6%) the C-terminus is much shorter.

As the defining element of the sHSP family, the a-crystallin domain is the most

conserved region of the sHSP sequence. Interestingly, genomic data has revealed

there to be an under-representation of aromatic residues, and an over-representation

N-terminal region α-crystallin domain

β2 β3 β4 β5 β7 β8 β9

IXI ExtensionTail

β6

Middle domain C-terminal region

Fig. 1 Domain architecture of the sHSPs. The defining element and most highly conserved region

of the sHSP sequence is the a-crystallin domain, which is flanked by the variable N- and C-

terminal regions. The a-crystallin domain is composed of seven or eight b-strands, for metazoans

or non-metazoans, respectively [37]. In the latter, the sequence between b5 and b7 contains an

additional, and distinct, b6 strand. In the metazoans this loop region is shortened, and instead the

b7 strand is elongated, into a “b6 + 7” strand. This leads to two alternative modes of dimerisation

for the sHSPs (see Fig. 2). The C-terminal region is split into two parts, referred to here as the “tail”

and “extension”, separated by an IXI motif. The N-terminal region by contrast has no obvious sub-

divisions. In HSP26, however, limited proteolysis has revealed a “middle domain” which is

inserted between the N-terminal region and a-crystallin domain [35]
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of charged amino acids in this domain [2]. Additionally there are notable positions

of particularly high conservation, for example the “disease arginine” (at position

120 in aB-crystallin) [37], mutation at which results in a variety of pathologies [38].

The C-terminal region is generally considered to be of two segments, termed

here as the “tail” and “extension” [39], which are separated by a highly conserved

IXI motif (Fig. 1). The extension appears to be present primarily in higher

eukaryotes [39]. In some members of the sHSP family, e.g. human HSP20 [40]

and Taenia saginata TSP36 [36], the entire C-terminal region is absent. The

N-terminal region is however essentially omnipresent and, in the main, consider-

ably longer. It displays almost no sequence conservation, and is responsible for the

majority of the sequence variation between sHSPs in the same organism [2].

Additionally, sites available for post-translational modification appear to be found

largely in this part of the protein [41]. It is quite possible that this variability of the

N-terminus may have a role to play in ensuring that a cell’s cohort of sHSPs can

recognise a wide range of target proteins.

2.2 The Protomeric a-Crystallin Domain Dimer

High-resolution structures have been very hard to come by for the sHSPs, and the

vast majority stem from isolated a-crystallin domains, truncated of the terminal

regions. All of these structures, however, reveal a common basic fold of the

a-crystallin domain, namely an immunoglobulin-like b-sandwich comprising up

to nine b-strands (Fig. 2). The different structures align very well, and are replicated
in the two structures solved for full-length, oligomeric sHSPs [42, 43]. However a

significant difference can be seen between the structures from animals relative to

other organisms (Fig. 2). In the structures determined for plant [43], archaeal [42,

44], and bacterial [45] sHSPs dimerisation occurs via reciprocal donation of the b6
strand, located in a loop, into the b-sandwich of a neighbouring monomer. By

contrast, in the mammalian sHSPs the b6 strand has fused with b7 [46–48] into an

elongated “b6 + 7” strand which had previously been suggested by spectroscopic

experiments, and predicted to enable dimerisation [49–51].

Interestingly, SAXS data has indicated that this dimeric interface observed in

truncated forms of the mammalian sHSPs has significant flexibility [52]. Further

insight comes from X-ray crystallography which has found three distinct alternative

registers formed by the paired b6 + 7 strands, causing a translation in the dimer

interface, two residues at a time, spanning approximately 15 Å [46, 48, 53] (Fig. 2).

These polymorphic states are termed, in order of decreasing overlap between anti-

parallel b6 + 7 strands, API, APII and APIII [48]. Solid-state nuclear magnetic

resonance spectroscopy (NMR) revealed that dimerisation of aB-crystallin
mediated by b6 + 7 pertains also to full-length protein, but to date only one register,

APII, has been observed [54]. While relating hydrogen/deuterium exchange rates

determined for full-length aB-crystallin [55] to the structure of the truncated dimer

certainly reveals the interfaces to be dynamic, it remains to be elucidated to what
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extent multiple AP interfaces are populated in the oligomers at equilibrium in

solution, and whether they interconvert. However, irrespective of these registry

shifts, it is clear that, despite very similar basic monomer structures, two distinctly

different modes of dimerisation have evolved across the kingdoms of life.

2.3 Heterogeneous N-Termini; Dynamic C-Termini

In contrast to the recent wealth of structural insight into the a-crystallin domain,

equivalent information about the termini remains relatively limited. In the crystal

structure of Methanocaldococcus jannaschii HSP16.5 none of the N-termini are

resolved [42]; however EM data revealed additional density within the central

cavity of the oligomer [56]. In HSP14.0 from Sulfolobus tokodaii two crystal

forms were obtained, with the N-termini resolved in one but not the other [44].

Similarly, in the crystal structure of the Triticum aestivum HSP16.9 oligomer, half

of the N-termini are unresolved; the remainder are structured and found in the

centre of the oligomer [57]. Atomic models generated for the N-termini of HSP16.5

[58] and aB-crystallin [59, 60] using sparse spectroscopic restraints, and the

N-termini resolved in the crystal structures of HSP16.9 [43], TSP36 [61] and

HSP14.0 [44], reveal a propensity to form helical secondary structure.

In apparent contradiction with these results, in hydrogen/deuterium exchange

studies of two plant sHSPs, HSP16.9 and Pisum sativum HSP18.1, rapid

90o

APIII

APII

API
Animal

Other organisms

β6-β2

[β6+7]2

Fig. 2 Distinct dimeric a-crystallin cores. The overall fold of the a-crystallin domain is an

immunoglobulin-like b-sandwich with a protruding loop, reminiscent of a “thumbs-up” hand

gesture. The structures are highly conserved amongst sHSPs, and accordingly monomers from

animals (red) and other organisms (blue) align very well. The corresponding dimeric partners

(light red and light blue, respectively), however, are found in distinctly different locations,

rotated � 180� relative to each other. This is as a result of the non-metazoan proteins dimerising

through reciprocal interaction between b6 and b2 strands; whereas the metazoan proteins dimerise

through their extended b6 + 7 strands. The latter dimerisation form has been observed in three

distinct registers, termed API, APII and APIII
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exchange of the N-terminal backbone amides was observed [62, 63]. Even those

positions involved in inter-dimer contacts approached complete exchange with

100 s, and only a single exchanging population was observed [63]. This

reveals that all 12 of the N-termini in these dodecameric proteins are essentially

equivalent, but does not rule out that at any given moment a sub-population

thereof may be structured and form relatively transient interactions. Taking these

results in combination with the evidence from the crystal structures suggests

that the N-termini populate multiple slowly inter-converting conformations in

the centre of the oligomer, perhaps helping to maintain the integrity of the

assemblies [64]. Such intrinsic heterogeneity could conceivably be important in

recognising and binding variable target proteins by presenting diverse geometries

for interaction [65].

In the structures of HSP16.9 and HSP16.5 the C-terminal tails were revealed to

span between dimers, such that the IXI motif binds into a groove between strands

b4 and b8 (Fig. 3a). Similar “cross-linking” interactions mediated by the C-termini

were observed both in X-ray structures of a-crystallin constructs lacking the

C-terminal extension [48] and solid-state NMR data on the full-length protein

[54], both obtained at temperatures below freezing. Interestingly, however, for

the a-crystallins at physiological temperature in solution it appears that the IXI

motif is actually predominantly detached from the oligomer [66–68]. This apparent

DrαA-crystallin
BtαA-crystallin
HsαB-crystallin

RnHSP20
TaHSP16.9
MjHSP16.5

StHSP14.0
XaHSPA
Tsp36

N-terminus

C-terminus

90o

a b

Fig. 3 Variability in the termini. C-termini make inter-dimer contacts, binding over the groove

between b4 and b8 strands; by analogy with Fig. 2, the a-crystallin core “hand” grasps the

C-terminal “string” from an adjacent monomer (a). This interaction has been observed in all

crystal structures in which the C-terminal IXI motif is resolved. In other cases (Tsp36, RnHSP20)
the groove is instead occupied by residues from the N-terminus. Notably both directions of binding

have been observed (direction indicated by triangles placed in the location of the X in the IXI,

solid arrows bind top-right to bottom left). Note that this interaction can even be intra-molecular,

as observed in the structure of DraA-crystallin (cyan). The angle which the C-terminus makes

from the a-crystallin domain is very variable (b). Illustrated are all C-termini resolved in sHSP

crystal structures, and it is notable that this variability in angle is found even for the same protein,

either in the same oligomer (TaHSP16.9) or in different crystal forms (StHSP14.0, BtaA-
crystallin). N-terminal residues are observed in fewer structures, but also reveal heterogeneity.

This ability of the terminal regions to adopt different orientations is likely crucial for the sHSPs’

ability to populate multiple oligomeric states
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contradiction can be rationalised by the strong temperature dependence of

fluctuations of the tail [66], and points to a careful thermodynamic regulation of

the IXI binding [69]. Unlike the tail, NMR studies have revealed that the C-terminal

extension, for those sHSPs in which it is present, is intrinsically disordered and

tumbles freely in solution [70, 71]. This region of sequence is primarily hydrophilic

and is thought to facilitate the detachment of the remainder of the C-terminus [72].

Considering that a-crystallins with truncated extensions are associated with cata-

ract [73], a picture emerges in which the dynamics of the C-terminus are crucial to

chaperone function, potentially through regulating access to the b4/b8 groove in a

form of “auto-inhibitory” regulation [43, 54].

2.4 Oligomeric Assembly Is Mediated by Flexible Terminal
Interactions

While the sHSPs are prefixed by “small” due to their low monomeric molecular

mass, relative to the other heat-shock proteins (HSPs), this is something of a

misnomer. The sHSPs are typically oligomeric, with the majority studied so far

comprising 12 or more subunits and having masses in excess of 200 kDa [9], making

them among the largest of the HSPs. Though only two high-resolution structures (for

HSP16.5 and HSP16.9) exist for such oligomers, in both cases they are stabilised by

inter-dimer connections formed by the terminal regions of the protein as well as

specific interactions between the a-crystallin core building blocks [42, 57].

In these structures the C-termini decorate the surface of the oligomer, holding it

together by bridging between the a-crystallin domains of adjacent dimers [42, 57]

(Fig. 3a). It is notable that the angle made between the domain and the tail is

variable, even within the same oligomer [57] (Fig. 3b). Such flexibility in the tail is

mediated by a “hinge-loop” just C-terminal to the core domain [48, 74] and, it is

tempting to speculate, explains how the sHSPs can be found in a range of oligo-

meric forms [75]. Furthermore, it is notable that for the a-crystallins the area of

sequence around the IXI is palindromic [46, 48], which may allow an additional

degree of variability in assembly. The versatility of the C-terminus is reminiscent of

that in the coat protein VP1 whose conformational flexibility mediates its variable

assembly in simian virus 40 [76].

In the case of TSP36, which lacks a C-terminus, the b4/8 groove in the

a-crystallin domain is instead occupied by N-terminal residues [61]. The presence

of IXI motifs in both the C-terminus and extreme N-terminus of a number of sHSPs,

such as the a-crystallins, raises the possibility that there may be some extent of

inter-changeability between the two termini. Alternatively, the structure of

HSP16.9 demonstrated the ability of the N-termini to extend across the central

cavity of the oligomer, intertwined in a pairwise manner [57]. Considering HSP16.9

is a monodisperse dodecamer, this may amount to a specific interaction acting to

lock the protein into a single oligomeric stoichiometry, reminiscent of the role

played by the protein P30 in the bacteriophage PRD1 [77].
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Conceivably, as the N-termini in the main appear heterogeneous, it is possible

that they interact with each other relatively non-specifically, driven together

by hydrophobic interactions [64]. Constructs of the a-crystallins, truncated of the

N-terminus but retaining the C-terminus, were only able to form oligomers to very

low abundance relative to sub-oligomeric species [48]. However, in the case of

HSP16.5, the protein was still observed as an oligomer after removal of the

N-terminus [78], but was completely disassembled after further removal of the

C-terminus [79]. It appears therefore that the N-termini are not necessarily required

for oligomerisation, but contribute to the thermodynamic stability of the resultant

assemblies. While the importance of the N-terminus therefore appears to vary

between sHSPs, it clearly has a role to play in defining oligomerisation, the details

of which warrant further investigation.

2.5 sHSPs Assemble into Multiple Polyhedral Topologies

Members of the sHSP family populate a continuum of oligomeric states, from

monodisperse to extremely polydisperse [56]. Notably, plant sHSPs typically

exist as single oligomers, generally dodecamers [80]. Conversely, many mamma-

lian sHSPs co-populate a wide range of oligomeric states at equilibrium; for

example the a-crystallins adopt all possible stoichiometries between approximately

10 and 50 subunits [81, 82]. Between these two extremes, sHSPs have been

characterised that populate an intermediate number of oligomeric states, with

certain amongst them preferred, such as for example Saccharomyces cerevisiae
HSP26 [83] and Acr2 from Mycobacterium tuberculosis [84]. This tendency

towards polydispersity has proven to be a major hindrance in the structural

characterisation of sHSPs [22].

Nonetheless, the X-ray structures determined for sHSPs at conditions in which a

single oligomeric state was populated provide considerable insight. HSP16.5

crystallised as a 24mer, in which the subunits are assembled into an octahedron,

with a protomeric dimer comprising each edge (Fig. 4a) [42]. Remarkably, insertion

of additional residues in the N-terminus resulted in an expanded symmetric oligo-

mer, with 24 dimers assembled into a cuboctahedron [75] (Fig. 4a). The dodecamer

of HSP16.9, by contrast, assembles into a “double-ring” topology, i.e. two triangu-

lar rings stacked on top of each other (Fig. 4a) [43]. Docking of a dimer into the

electron microscopy (EM) reconstruction of Acr1 from M. tuberculosis reveals an
alternative arrangement for dodecameric sHSPs, namely a tetrahedron (Fig. 4a)

[84]. This striking oligomerisation into polyhedral geometries reveals the important

observation that all the a-crystallin core dimers within the oligomers are essentially

equivalent structural environments, connected via terminal interactions (Fig. 4b). It

is plausible that this characteristic results in there being no great energetic differ-

ence for a dimer residing in a specific oligomeric stoichiometry, and therefore

enables multiple oligomeric states to be populated at equilibrium [66]. As polyhe-

dral arrangements result in dimers being arranged symmetrically while also
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satisfying similar terminal interactions, it has been proposed that polydisperse

sHSPs share these scaffolds [85].

2.6 Hybrid Approaches to Determine the Structure
of Polydisperse sHSPs

The inherent polydispersity and plasticity of sHSPs are a significant impediment to

their structural characterisation. These characteristics are likely however to be impor-

tant to their cellular function, for example in preventing the unwanted crystallisation

of the a-crystallins despite their high concentration in the eye lens [86], but

sHSP dimer

C-terminus
Ring

Stacked-ring

Pyramid

Prism

Bipyramid

a

b

Fig. 4 Polyhedral architecture of the sHSPs. The structures, from left to right, of HSP16.9

(12mer), Acr1 (12mer), HSP16.5 (24mer), and a modified HSP16.5 (48mer) display striking

polyhedral geometries (a). They assemble as a double ring, tetrahedron, octahedron and

cuboctahedron, respectively (in sequence, left to right). In each case the a-crystallin domain

dimers (blue) are collinear with the edges of the polyhedron, as illustrated for HSP16.9. The

dimers are held together by extended C-termini (red, cf. Fig. 3), and the N-termini (green) are
sequestered on the inside of the oligomers. This assembly of core dimers into polyhedra via C-

termini can be illustrated schematically using nets of several classes of polyhedra (b). Nets are

shown based on a triangular base-unit, but could easily be drawn for larger polygons in these

classes (e.g. a square pyramid). Similar nets can be drawn for any given polyhedron such that all

the C-termini are “satisfied”, binding dimers together at the vertices
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accordingly render the determination of X-ray structures of these proteins extremely

challenging [22]. This has in recent years led to the application of both novel and

integrated structural biology approaches to the sHSPs. The size limit of traditional

solution NMR approaches has been circumvented to provide insights into the

a-crystallins, either by examining truncated forms [50] or regions of marked flexi-

bility [70, 71]. Moreover, the large oligomeric species have even be examined

directly by means of solid-state NMR [54, 59], or via selective labelling of amino

acids in methyl transverse relaxation optimised spectroscopy (TROSY) solution

NMR [66] and electron paramagnetic resonance (EPR) approaches [51, 87, 88].

These varied strategies all provide structural information, ensemble-averaged

onto the monomer level. In order to translate these insights onto the quaternary

structure, studies have combined NMR data with that obtained from EM [59, 85],

small-angle X-ray scattering (SAXS) [54, 59] or ion-mobility spectrometry (IM)

[85], all of which report on the oligomeric form. Particular challenges are posed in

the cases of polydisperse sHSPs and techniques are required which can separate,

and address individually, the constituent oligomeric states. Single-particle analysis

of EM data provides the opportunity to generate three-dimensional reconstructions

of particles after their sorting according to size [89, 90]; currently however, the

highest resolution of separation for macromolecular assemblies is afforded by MS

approaches [91]. In the case of aB-crystallin, the archetypal polydisperse sHSP,

early EM analysis revealed a broad range of oligomeric sizes and masses, with

apparently variable symmetries [92, 93]. MS enabled the identification and relative

quantification of the underlying individual oligomeric states, revealing a broad

distribution of stoichiometries centred around �28 subunits [81, 82] (Fig. 5a).

Recently, an EM reconstruction for aB-crystallin was obtained by assuming that

the principal oligomer states shared common symmetry elements [94]. This was

combined with solid-state NMR [59] and cross-linking MS [60] data to generate

model oligomers constructed from hexameric sub-complexes [59, 60]. An orthogo-

nal approach, using IM–MS to discriminate between candidates based on a variable

polyhedral architecture, and cross-validation with EM data, revealed alternative

structures for this protein [85] (Fig. 5a). While these studies have reported plausible

models for aB-crystallin, they differ in terms of symmetry and size distribution.

While definitive structures therefore remain elusive, it is clear that the emergence of

novel and hybrid approaches have provide new impetus to the structural study of

this notorious target for structural biology.

2.7 sHSP Oligomers Can Transition Between Compact
and Expanded Forms

Aside from the variability in quaternary structure afforded by polydispersity, it

appears that sHSPs oligomers themselves can exist in multiple conformations

(Fig. 5b). A cryoEM study of HSP26 revealed two distinct populations of

24mers, differing by approximately 5% in diameter [90, 95]. Additionally, subunit
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Fig. 5 Macro- and micro-heterogeneity of the sHSPs. Many sHSPs are polydisperse, populating a

range of oligomeric states at equilibrium (a). The most famous example of this macro-

heterogeneity is aB-crystallin, which forms oligomers spanning 200–1,000 kDa, as determined

using size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) (pur-
ple) [91]. Mass spectrometry measurements have revealed the underlying distribution of oligomers

(cyan) to be centred on 28 subunits, with those stoichiometries composed of an even number of

subunits to be preferred [82]. Ion-mobility mass spectrometry measurements allowed the filtering

of structural models, based on polyhedral scaffolds (Fig. 4), to reveal the likely architecture of the

24mer, 26mer and 28mer forms [85]. These structures are based on an octahedron, augmented

triangular prism and gyrobifastigium, respectively (right). Aside from populating multiple

stoichiometries, different conformations of individual sHSP oligomeric states have been observed

(b). Electron microscopy investigations of both ScHSP26 and AfHSP20.2 suggested the possibility
of sHSPs populating “expanded” and “compact” forms, differing in overall size but not topology.

This micro-heterogeneity adds an additional level to the quaternary complexity of the sHSPs
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exchange of HSP26 could only be quantitatively understood by invoking at least

two separate dissociation rate constants, consistent with two types of oligomers

[83]. Differences were noted between negative-stain EM reconstructions of

Arabidopsis thaliana HSP21, in the presence or absence of cross-linker, hinting

at the possibility of multiple conformations differing in terms of compactness [96].

A similar observation was also made in a negative-stain EM study of the octahedral

HSP16.5 and Archaeoglobus fulgidus HSP20.2 24mers. For both proteins the

relative proportions of the two forms varied as a function of temperature,

demonstrating that the two states can interconvert [97]. Previous studies of

HSP16.5 had reported some heterogeneity of the protein [56, 98, 99]. As such it

appears that sHSPs not only display “macro-heterogeneity”, that is populating

multiple oligomeric stoichiometries, but that these individual stoichiometries can

adopt multiple quaternary structures in a form of “micro-heterogeneity”. Moreover,

for HSP20.2 the larger form was predominant at temperatures both above and

below the physiological temperature of the organism, suggesting a functional role

for these quaternary conformational fluctuations.

The underlying structural origin of these expansions and contractions of the

oligomers is unclear. There is evidence that they might stem from packing differences

enforced by rearrangement of the inter-dimer contacts formed by the terminal regions

[95]. For HSP26, theymay be caused by its uniquemiddle domain, which undergoes a

conformational switch upon heat shock [100]. Alternatively, the a-crystallin domain

dimeric building-block itself might fluctuate in length, for example due to changes in

register at the interface [48, 53], which would propagate to have consequences on the

overall size of the oligomer. Alternative registers have so far only been observed for

mammalian sHSPs, which have an extremely labile dimer interface formed by the

b6 + 7 strand [50, 82]. However, considering that the interface of dimers formed via

the b6 loop are also easily broken [101], it is not inconceivable that a similar

mechanism might also occur in sHSPs from lower organisms.

2.8 sHSPs Co-Assemble into a Recycling Oligomeric Ensemble

In addition to the complexity afforded by both macro- and micro-heterogeneity, it has

long been known thatmembers of the sHSP family co-assemble into hetero-oligomers

in vivo [102]. Isolated sub-populations of oligomers re-equilibrate to the parent

distribution [103] in a process mediated by the movement of individual subunits

[104]. The combinations of sHSPs which are compatible for co-assembly are depen-

dent on their evolutionary relationships [80]; however the subunit exchange of the

individual oligomers appears to be a general property of these proteins [105–108]. As

such, the sHSPs should not be considered as static homomeric proteins, but rather as a

continually “recycling” ensemble of hetero-oligomers.

Subunit exchange occurs via the dissociation of the oligomer, with a rate

strongly dependent on solution conditions [82, 105]. This reveals that the sHSPs

are in a rapid equilibrium with a small population of sub-oligomeric forms. The
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identity of the exchanging unit depends on the sHSP in question, with monomers

[82], dimers [108] and mixtures thereof [101] all having been observed directly in

high-resolution mass spectrometry experiments. This equilibrium between

oligomers and smaller species is shifted towards dissociation at elevated

temperatures, with appreciable concentrations of the latter observed under heat-

shock conditions for some sHSPs [80, 83, 109], but not for others [80, 82].

Concomitant to this dissociation, high-order oligomers have also been observed,

such that sHSPs which are monodisperse under ambient temperatures effectively

become polydisperse at elevated temperature [110, 111]. These processes of

assembly, dissociation and exchange are also affected by modifications to the

sHSPs thought to regulate or compromise sHSP activity such as post-translational

modification [72, 112, 113] or mutation [114–116]. Given these characteristics, it is

tempting to speculate that such quaternary dynamics are important for chaperone

function, presumably by exposing target-protein binding regions either on the sub-

oligomeric species, or en route to dissociation [9, 57].

3 The Molecular Chaperone Function of sHSPs

As might be expected from their evolutionary diversity, sHSPs have been reported

to be involved in a range of cellular processes. The role which is common to most

members of the family is the ability to act as molecular chaperones [117, 118]. This

function of the sHSPs was first demonstrated when it was found that a-crystallin
could prevent the accumulation of aggregation-prone eye-lens proteins [119]. This

in vitro observation was later confirmed in vivo when aA-crystallin knockout mice

developed inclusion bodies rendering the eye lens opaque [120]. Furthermore,

disruption of the aB-crystallin and the adjacent HSPB2 sHSP genes resulted in

degeneration of some skeletal muscles [121]. Since the pioneering work on

a-crystallin, many other sHSPs have been demonstrated to have molecular chaper-

one activity, and it is quite likely that the ability to interact with non-native states

even underpins the mechanism of their other activities in the cell [6].

3.1 High-Capacity Holdase Function of sHSPs Sequesters
Destabilised Targets from Aggregation

It has been established for some time that the molecular chaperone role of sHSPs is to

bind target proteins whose native structure is destabilised by a range of stresses [119,

122–125]. Under such conditions, these proteins can have a tendency to form amor-

phous or amyloid aggregate morphologies [18]. Rather than refolding the targets,

as is the case for the ATP-dependent “foldase” chaperones such as HSP60, HSP70

and HSP90 [126], the sHSPs instead act in an ATP-independent manner to trap

them as they unfold [119, 122–125]. The resultant complexes formed between
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the sHSP and target proteins can range in mass up to several MDa [111, 127, 128].

The binding capacities of the sHSPs vary between different members of the family,

but can be very high, with the chaperones capable of protecting stoichiometric

quantities of target [128, 129]. The capacity appears to be somewhat dependent

on the identity of the target protein [127, 129], perhaps purely reflecting the

mass of the target [7, 130]. As such, the sHSPs can be viewed as high-capacity

“sponges” for non-native proteins, preventing the deleterious consequences of their

aggregation [131].

Themajority of assays for studying sHSP activity rely on assessing the ability of the

chaperone to suppress the aggregation of model proteins, due to the difficulties in

purifying inherently unstable targets [132]. It is not uncommon that the apparent

efficiency of protection is dependent on the choice of model protein [133]. As such

these in vitro assays might not be expected to capture all aspects of in vivo function

[134]. Nevertheless, the capacity of sHSPs to interact with a range of destabilised

model proteins renders it likely that they have multiple targets in the cell [9,

57]. Determining the characteristics of actual cellular substrates has however been

hampered by the absence of easily assayed phenotypes associatedwith sHSP deletions

in yeast orEscherichia coli [135, 136]. However, a study using Synechocystis sp. PCC
6803, in which only a single sHSP is encoded and the deletion of which results in

lack of thermo-tolerance [137], identified interactions with numerous proteins [132].

These interactors displayed no commonality in sequence or structure, and spanned

functions ranging from transcription, translation, to cell signalling, and secondary

metabolism [132]. A similarly heterogeneous set of targets was also observed in

yeast, corroborating the apparent broad specificity of sHSPs [138]. The general

chaperone function of the sHSPs therefore appears to be to act as “holdases”,

sequestering target proteins and thereby impeding the deleterious consequences

of their aggregation [131].

3.2 sHSP Activity Is Influenced by Environmental Conditions

Multiple different stresses have been reported to stimulate the activity of sHSPs.

Primary to these is heat shock, with sHSPs generally thought to be more effective

chaperones at elevated temperature. For example, HSP26 has been demonstrated

to undergo significant structural and dynamical changes around 40�C, consistent
with a thermal activation of the protein [83, 100, 109]. While HSP26 is unusual in

containing a middle domain, HSP18.1 undergoes a similar dynamic transition in

oligomerisation from an inactive “storage form” into a functional chaperone with

temperature [111]. In fact chaperone functions at temperatures far in excess of

those normally termed “heat shock” have been reported [139]. On the other hand,

some sHSPs have been shown to retain chaperone activity below heat shock

temperatures [140], demonstrating that thermal activation is not a universal

requirement for sHSP function.
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Solution pH is also known to affect the molecular properties of the sHSPs.

Studies of aB-crystallin have revealed dramatic changes in the thermodynamics

and kinetics of the inter-subunit interfaces [50, 54, 66, 82]. This is reflected in pH-

dependent changes in chaperone function in vitro [141–143], and a role for aB-
crystallin in responding to cellular acidification [144–146]. sHSPs have also been

demonstrated to provide protection against toxicity from metal ions in vivo [147].

The a-crystallins have been shown to bind metal ions directly [48], potentially

silencing any tendency to oxidise [148, 149], and resulting in modulation of their

chaperone function [150, 151]. This behaviour is interesting in light of the role of

the redoxins, which switch from their enzymatic function to become molecular

chaperones upon oxidative stress [152, 153].

While it has been generally accepted that the function of sHSPs is as ATP-

independent molecular chaperones, there have been reports suggesting that the

sHSPs can bind nucleotides [154, 155]. This finding is supported by the observation

of sulphate ions accumulated at the dimer interface in recent crystal structures [48,

156]. Mapping changes in residue-specific protease susceptibility of aB-crystallin
upon the addition of nucleotide [157] on the structure of the core domain suggest

that the location of the sulphate may represent ATP-binding sites [53]. This is in

line with the notion that nucleotide binding (rather than hydrolysis) might regulate

activity [154], a mode of action that contrasts with the canonical chaperones, in

which the turnover of ATP drives their action [158].

Members of the sHSPs can become post-translationally modified upon stress,

with phosphorylation in particular implicated in affecting their function [159–161].

Accordingly, profound effects of phosphorylation on the chaperone activity have

been observed in vitro [112, 162–164]. However, the identity of the target protein

and solution conditions both strongly influence whether the post-translational mod-

ification leads to an increase or decrease in chaperone efficacy [133]. As such, while

the evidence clearly points to phosphorylation regulating the function of sHSPs, a

simple description of the mechanism appears unlikely [165]. Overall, from the

differences in activity observed for the sHSPs as a result of multiple and varied

stimuli, a picture emerges of a family of molecular chaperones which are exquisitely

and directly controlled by the insult responsible for a particular stress condition.

3.3 sHSPs Co-Operate with the Cellular Machinery to Allow
Reactivation or Degradation of Targets

While the sHSPs are active under stress conditions and act to bind non-native target

proteins, they do not themselves appear to enable their refolding. Instead the target

protein is subsequently retrieved from the sHSP:target complex and refolded upon

interaction with ATP-dependent chaperones [166–169]. This renaturation pathway

involves the HSP70/HSP40 system (DnaK/J in prokaryotes), a nucleotide exchange

factor, and HSP100 working in concert with the sHSPs to liberate and refold

unfolded substrate proteins [170].
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While it has been demonstrated that the sHSPs facilitate the disaggregation of

insoluble protein deposits [135, 170–174], the mechanism by which this is achieved

is presently unclear. Recent studies suggest that different sHSPs may play varying

roles in the resolubilisation process [175]. It is likely that they act to compete

kinetically for the inter-molecular interactions that would otherwise ultimately lead

to the formation of stable aggregates, instead holding proteins in a conformation

more amenable to subsequent refolding [170].

While the link between the sHSPs and ATP-dependent foldases is clear, recent

evidence also points to their interaction with the protein degradation machinery [176].

A number of studies have linked sHSPs with the proteasome/ubiquitin pathway

[177–180], and the E. coli sHSPs IbpA and IbpB have been shown to be substrates

of the Lon protease [181]. Though this field warrants considerably more attention, the

involvement of sHSPs in both the refolding and degradation pathways reveals them as

crucial switching points in determining the fate of unfolded proteins [182].

3.4 sHSPs Possess Multiple Sites that Become Exposed to
Bind Targets

Considerable effort has been expended in an attempt to elucidate the region of the

sHSPs which interact directly with the target proteins. Different studies have

implicated the N-terminal region [65, 134, 183, 184], the C-terminus [185, 186]

and the a-crystallin core [149, 187, 188]. Indeed, isolated a-crystallin domains from

some sHSPs have been shown to have a certain amount of molecular chaperone

activity [48, 52]. Taking these results together implies that there is no single binding

site within the oligomer, but rather that these are dependent on the sHSP or target

protein in question [6] (Fig. 6).

A commonality observed in the majority of putative interacting regions which

have been elucidated is that they are hydrophobic in nature [6]. This is unsurprising,

considering that it is the exposure of complementary hydrophobic surfaces on target

proteins which renders them aggregation prone. It has been shown that the number

of accessible hydrophobic sites on the sHSP increase upon heat shock [80, 167,

189], prompting the question whether this is a consequence of structural

rearrangements of the sHSP oligomer.

A popular hypothesis, based on cumulative evidence from studies of several

different members of the family which demonstrated oligomeric dissociation at

heat-shock temperatures, is that a sub-oligomeric species form of the sHSP initially

binds the target [109, 137, 190]. This mechanism does not appear to be universal,

however, as a number of examples have emerged showing that dissociation, or its

corollary, the rate of subunit exchange, is not necessarily correlated with chaperone

activity [72, 80, 82, 191, 192]. In this regard it is informative to consider the case of

HSP26. An early study of this protein demonstrated it to undergo dissociation into

sub-oligomeric species at heat shock temperatures, suggesting this event to predi-

cate chaperone activity [109]. However, subsequent studies revealed that chaperone
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activity was unaffected if the oligomer was cross-linked such that it could not

dissociate [191]. Instead, a thermally regulated conformational change in the

middle domain [100], which in the unrestrained protein is concomitant to changes

in oligomerisation [83], has been implicated as underlying activation of this sHSP.

This example illustrates that even if a protein undergoes dissociation into sub-

oligomeric species at heat-shock temperatures, this does not necessarily imply that

the sub-oligomeric species is the active target-binding form.

An alternative model is motivated by a recent cross-linking study between

HSP18.1 and malate dehydrogenase which suggested that the N-terminal region

was primarily responsible for binding [65]. However, examination of the structure

of its homologue HSP16.9 reveals at least some of the N-termini to be sequestered

within the centre of the oligomer [43], a location structurally incompatible with the

high binding capacity of the chaperone. It is possible therefore that the N-terminal
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Fig. 6 Molecular basis for activation of binding of target by the sHSPs. A range of structural and

dynamical changes in the sHSPs have been observed which have been ascribed to switching the

chaperone into an “active” state. These are separated here according to effects on the oligomer

(left) or protomer (right) level. The former include dissociation of the oligomer; a conformational

rearrangement of a domain within the oligomers; or a change in oligomeric distribution. At present

no universal pathway has emerged, and activation is likely to be sHSP dependent. Ultimately, and

common to all sHSPs studied, large and heterogeneous sHSP:target complexes are formed. On the

protomer level evidence for the exposure of the b4–b8 groove by detachment of the C-terminus,

exposure of the dimer interface and unfurling the N-terminus has been proposed. The diversity in

mechanism is likely to reflect the evolutionary diversity of both the sHSPs and their targets
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arm unfurls from the central cavity of the protein to become exposed at heat-shock

temperatures in an intrinsically disordered state which can present diverse

geometries of interaction sites for binding [65]. One can even envisage a situation

whereby the N-terminus acts to modulate the surface of the oligomer, similar to the

way in which the specificity of protein phosphatase 1 is governed by the binding of

its unstructured regulator proteins such as spinophilin [193]. Such a release of the

N-termini would necessitate the loss of the directional inter-dimer constraints they

form in the crystal structure of HSP16.9. Circumstantial evidence for this mecha-

nism therefore comes from that fact that at heat-shock temperatures the oligomeric

form of this protein is no longer confined to a dodecamer [110].

This change in protein partitioning, with most of the protein being re-allocated

from a monodisperse oligomer at ambient temperatures into a polydisperse ensem-

ble, arises purely from thermal motions that transfer subunits between oligomers of

varying relative stability. This is particularly pronounced for HSP18.1 [111]

where, interestingly, the resultant distribution of higher oligomers that was observed

in this study was very similar to that populated by the a-crystallins at ambient

temperatures [82, 162], conditions under which they remain chaperone-active.

This raises the possibility that a polydisperse ensemble of oligomers may not only

be a direct consequence of sHSP activation, but may even itself be of direct

functional benefit.

In combination these studies suggest that there are not only multiple binding sites

on the oligomer but also different mechanisms for their exposure to target proteins

(Fig. 6). A common thread appears to be that the native oligomer represents a

chaperone-inactive “storage form”, which undergoes a transition to a chaperone-

active form. Such a change may exist purely to prevent unwanted, retarding

associations with non-native states during non-stress conditions. Alternatively it

may signal a switch between different cellular functions, analogous to redoxins

which have been observed to become chaperone active upon a stress-induced change

in the oligomeric state [152, 153]. Overall, however, it is clear that there are

considerable mechanistic variations in the chaperone function of different sHSPs,

emphasising the broad specificity of these chaperones in protecting the proteome.

3.5 sHSP:Target Complexes are Plastic and Polydisperse

The complexes formed when sHSPs are incubated with target proteins are very

large and extremely heterogeneous [127, 128]. This is in stark contrast to the

defined stoichiometries of interaction observed for foldase chaperones and their

targets [158]. Such heterogeneity severely hampers structural interrogations, but

can be overcome using the high resolution of separation afforded byMS approaches

[91]. Employing a tandem-MS strategy [81], the different complexes formed

between HSP18.1 and luciferase were identified and quantified [111]. Despite

these experiments being performed with an excess of chaperone, remarkably over

300 stoichiometries of interaction were observed, variable in both the number of
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sHSP and target subunits [111]. In light of the observation that sHSP:target

complexes scale with the amount of target protein [127], a glimpse of the

bewildering polydispersity of these complexes is obtained.

The complexes are not static entities; indeed they can continue to incorporate

ever-increasing amounts of substrate [111, 127, 128]. Moreover, the sHSP subunits

continue to exchange with free sHSP oligomers and other complexes [127].

By contrast, target proteins appear unable to transfer from one complex to another

[127].Hydrogen/deuterium exchange experiments revealed no difference in backbone

amide protection between the sHSP free in solution or in complex [62], and

a-lactalbumin associated with a-crystallin is still visible in proton NMR spectra,

implying that it must spend a significant proportion of its time tumbling independently

in solution [194]. These data therefore reveal that the interaction between sHSP and

target protein is, at least in some cases, only transient, presumably to facilitate

subsequent transfer to the refolding machinery.

In addition to these inherent dynamics and variability, it also appears that sHSP:

target complexes can adopt different morphologies [128, 130]. Interestingly it appears

that this is target-protein dependent: the same sHSPs formed different morphologies

with different targets [128, 130] but complexes of different sHSPs and the same target

appear similar [128]. This can be rationalised by the observation that the sHSPs bind

target proteins early during the unfolding process, when their structure is largely

preserved [62, 130]. In summary, the complexes formed between sHSPs and targets

are extremely polydisperse and dynamic, which renders their structural

characterisation very challenging, but is likely integral to their cellular function.

4 Paramedics Within the Proteostasis Network

Molecular chaperones are crucial for the maintenance of cellular protein homeosta-

sis [10]. sHSPs are an important part of this network, being dramatically

upregulated and activated during cellular stress, and sequestering destabilised

targets from aggregation. In this way, sHSPs can be regarded as the paramedics

of the cell [83], rapidly stabilising the targets prior to their attention by the refolding

or degradation machinery. Aside from this important role in overcoming the

kinetics of aggregation, the sHSPs also act to increase the proteostasis capacity of

the cell. By temporarily storing the aggregation-prone proteins, awaiting refolding

or degradation, they act as a vital buffer between protein unfolding and its poten-

tially deleterious consequences.

While the sHSPs form a crucial part of the proteostasis network [11], they

themselves can be thought of as a highly dynamic sub-network. As discussed

above, many studies have shown that sHSPs can adopt a range of plastic oligomeric

states, containing chains from multiple different sHSPs. As many organisms

express multiple sHSPs in the same cellular compartment, this will lead to their
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coassembly upon synthesis. If all particular subunit arrangements are allowed the

number possible of oligomers NOli is given by

NOli ¼
Xn

i

½NsHSP þ Pi � 1�!
Pi!½NsHSP � 1�!

where NsHSP is the number of sHSPs capable of coassembly and i the number of

sHSP subunits in a particular oligomeric stoichiometry P.
As an example, for monodisperse hetero-dodecamers (Pi ¼ 12), if there are six

compatible sHSPs (NsHSP ¼ 6), as is the case for class I sHSPs in the Arabidopsis

cytosol [3], the number of potential oligomers is 6,188. In the analogous calculation

for class I cytosolic sHSPs in Californian poplar (NsHSP ¼ 18) [3], almost

52,000,000 combinations are possible. While what proportion of these potential

hetero-oligomers are formed in vivo will be influenced by factors such as tissue

specificity and relative expression rates and levels, the number of possibilities is

nonetheless remarkable. Combined with the observation that the oligomers rapidly

exchange subunits, this suggests that sHSPs should not be regarded as individual

oligomers but rather an extensive and interconverting ensemble.

The very large numbers of compatible sHSPs in plants are not replicated in

mammals but instead it appears that a different mechanism to achieve the same

effect might be at play. In the case of a-crystallin in the eye lens, where both

isoforms A and B are expressed and populate oligomeric states between 10 and

50mers [66], 1,271 combinations are possible. Additionally, aB-crystallin is found

outside the lens, and is one of seven sHSPs abundant in muscle, leading to

potentially over 264,000,000 different complexes. Although, specificities of inter-

action between sHSP pairs [195] will act to reduce this number in the cell, the

polydispersity of many members of the family can act as a means to magnify the

diversity of hetero-oligomers.

Indeed, in the case of plant sHSPs it has been shown that a mono- to polydisperse

transition occurs under heat-shock conditions, and therefore both the large number

of sHSPs and polydispersity can combine to create astonishingly large possible

numbers [111]. It remains to be proven to what extent this diversity exists in vivo,
and how it acts to regulate molecular chaperone function. It is however enlightening

to consider the parallels with the immune system in higher eukaryotes, whereby a

relatively small number of genes (~300) can give rise to over 108 different antibodies

[196], allowing the recognition of the diverse structures of antigens. It is tempting to

speculate that evolution of such an extensive sHSP ensemble, within the context of

the wider chaperone network [197], allows organisms to protect themselves against

the diversity of unfolding client proteins and thereby maintain proteostasis.
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